Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.139$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,7-Bis(4-methoxyphenyl)-1,3,7-triphenyl-2,3,5,6,7,7a-hexahydro-1H-pyrrolo[2,3-d]-pyrimidine-2,5,6-trione

The synthesis of the title compound, $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$, proceeds through a $[4+2]$-cycloaddition reaction. 4-(4-Methoxy-benzoyl)-5-(4-methoxyphenyl)furan-2,3-dione was reacted with phenyl isocyanate to synthesize this new derivative of pyrrolo[2,3-d]pyrimidine in a low-temperature reaction. The molecule is composed of a pyrrolopyrimidine moiety with three phenyl and two p-methoxyphenyl substituents.

Comment

Some pyrrolo[2,3- d]pyrimidines are known to possess considerable antitumor, antiallergic, antiviral and antiinflammatory activities (Hutzenlaub et al., 1972; Smith et al., 1972). As part of our interest in such compounds, we have synthesized and studied the single-crystal X-ray structure of the title compound, (I).

The molecular structure of (I) is illustrated in Fig. 1. Its structure is similar to that of 7,7a-dihydro-1,3-bis(4-methyl-phenyl)-4,7,7a-triphenyl-1H-pyrrolo[2,3-d]pyrimidin-2,5,6-(3H)-trione, (II) (Kollenz et al., 1984). However, the substitution on the pyrrolopyrimidine moiety differs. In (I), the substituents on atoms N 1 and N 2 are phenyl, whereas in (II) they are p-tolyl. The substituents on atoms C1 and C6 in (I) are p-methoxyphenyl, whereas in (II) these substituents are phenyl. The bond lengths and angles for the pyrrolopyrimidine skeleton of (I) and (II) are comparable.

In the crystal structure of (I), there are intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 1).

Experimental

A mixture of 4-(4-methoxybenzoyl)-5-(4-methoxyphenyl)furan-2,3dione ($1 \mathrm{~g}, 2.96 \mathrm{mmol}$) and phenyl isocyanate ($1.05 \mathrm{~g}, 8.88 \mathrm{mmol}$) was heated at $333-338 \mathrm{~K}$ for 24 h without any solvent in a 25 ml roundbottomed flask equipped with a calcium chloride guard tube. After cooling to room temperature, the residue was treated with anhydrous diethyl ether and the crude product recrystallized from acetic acid and ethanol to give yellow crystals of (I) (yield: $1.26 \mathrm{~g}, 70 \%$; m.p. 474 K). IR (KBr): v 1730, 1686, $674 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1579 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.67-6.20(\mathrm{~m}, 23 \mathrm{H}, \mathrm{Ph}), 3.89,3.76\left(s, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 178.35,165.37,164.59(\mathrm{C}=\mathrm{O}), 162.469-115.58$ $(\mathrm{C}=\mathrm{C}$, aromatic and aliphatic), $81.36(\mathrm{~N}-\mathrm{C}-\mathrm{N}), 57.53,57.28$

Received 27 January 2005 Accepted 4 February 2005 Online 12 February 2005

organic papers

$\left(\mathrm{CH}_{3} \mathrm{O}\right)$. Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 75.12, H 4.77, N 6.91\%; found: C 74.75, H 4.83, N 7.01\%.

Crystal data

$\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$	$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=607.64$	Mo $K \alpha$ radiation
$\text { Monoclinic, } P 2_{\mathrm{d}} / c$ $a=13.196(2) \AA$	Cell parameters from 2924 reflections
$b=19.853$ (3) \AA	$\theta=4.5-50.6^{\circ}$
$c=11.9850$ (19) \AA	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=107.470$ (3) ${ }^{\circ}$	$T=150$ (2) K
$V=2995.0$ (8) \AA^{3}	Block, yellow
$Z=4$	$0.47 \times 0.29 \times 0.29 \mathrm{~mm}$
Data collection	
Bruker SMART1000 diffractometer ω scans	$\begin{aligned} & 3696 \text { reflections with } I>2 \sigma(I) \\ & R_{\mathrm{int}}=0.092 \end{aligned}$
Absorption correction: multi-scan	$\theta_{\text {max }}=27.5^{\circ}$
(SADABS; Bruker, 1997)	$h=-16 \rightarrow 17$
$T_{\text {min }}=0.959, T_{\text {max }}=0.974$	$k=-25 \rightarrow 24$
25141 measured reflections	$l=-15 \rightarrow 15$
6764 independent reflections	

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0494 P)^{2}\right. \\
&+0.2194 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
A view of the molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

References

Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Hutzenlaub, W., Tolman, R. L. \& Robins, R. K. (1972). J. Med. Chem. 15, 879883.

Kollenz, G., Penn, G., Dolenz, G., Akcamur, Y., Peters, K., Peters, E.-M. \& von Schnering, H. G. (1984). Chem. Ber. 117, 1299-1309
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Smith, C. W., Sidwell, R. W., Robins, R. K. \& Tolman, R. L. (1972). J. Med. Chem. 15, 883-887.

